Gradient Elasticity Formulations for Micro/Nanoshells
نویسندگان
چکیده
منابع مشابه
On finite element formulations for nearly incompressible linear elasticity
In this paper we present a mixed stabilized finite element formulation that does not lock and also does not exhibit unphysical oscillations near the incompressible limit. The new mixed formulation is based on a multiscale variational principle and is presented in two different forms. In the first form the displacement field is decomposed into two scales, coarse-scale and fine-scale, and the fin...
متن کاملComputational Evaluation of Strain Gradient Elasticity Constants
Classical effective descriptions of heterogeneous materials fail to capture the influence of the spatial scale of the heterogeneity on the overall response of components. This influence may become important when the scale at which the effective continuum fields vary approaches that of the microstructure of the material and may then give rise to size effects and other deviations from the classic...
متن کاملPreconditioned Conjugate Gradient Methods for Three Dimensional Linear Elasticity
Finite element modelling of three dimensional elasticity problems gives rise to large sparse matrices. Various preconditioning methods are developed for use in preconditioned conjugate gradient iterative solution techniques. Incomplete factorizations based on levels of fill, drop tolerance, and a two level hierarchical basis are developed. Various techniques for ensuring that the incomplete fac...
متن کاملShape Gradient Computation in Isogeometric Analysis for Linear Elasticity
The transfer of geometrical data from CAD (Computer Aided Design) to FEA (Finite-Element Analysis) is a bottleneck of automated design optimization procedures, yielding a loss of accuracy and cumbersome software couplings. Isogeometric analysis methods propose a new paradigm that allows to overcome these difficulties by using a unique geometrical representation that yields a direct relationship...
متن کاملGradient schemes for linear and non-linear elasticity equations
The Gradient Scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the Gradient Scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numeri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomaterials
سال: 2014
ISSN: 1687-4110,1687-4129
DOI: 10.1155/2014/846370